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Abstract

Purpose:Mild cognitive impairment (MCI) can be the prodromal phase of Alzheimer’s

disease (AD)where appropriate interventionmight prevent or delay conversion to AD.

Given this, there has been increasing interest in using magnetic resonance imaging

(MRI) and neuropsychological testing to predict conversion from MCI to AD. Recent

evidence suggests that the choroid plexus (ChP), neural substrates implicated in brain

clearance, undergo volumetric changes inMCI and AD.Whether the ChP is involved in

memory changes observed in MCI and can be used to predict conversion fromMCI to

AD has not been explored.

Method: The current study used data from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database to investigate whether later progression from MCI to AD

(progressive MCI [pMCI], n = 115) or stable MCI (sMCI, n = 338) was associated with

memory scores using the Rey Auditory Verbal Learning Test (RAVLT) and ChP vol-

umes as calculated from MRI. Classification analyses identifying pMCI or sMCI group

membership were performed to compare the predictive ability of the RAVLT and ChP

volumes.

Finding: The results indicated a significant difference between pMCI and sMCI groups

for right ChP volume, with the pMCI group showing significantly larger right ChP vol-

ume (p = .01, 95% confidence interval [−.116, −.015]). A significant linear relationship

between the RAVLT scores and right ChP volumewas found across all participants, but

not for the twogroups separately. Classification analyses showed that a combinationof

left ChP volume and auditory verbal learning scores resulted in themost accurate clas-

sification performance, with group membership accurately predicted for 72% of the

testing data.

Conclusion:These results suggest that volumetricChP changes appear to occur before

the onset of AD andmight provide value in predicting conversion fromMCI to AD.
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1 INTRODUCTION

Alzheimer’s disease (AD) is a multifactorial neurodegenerative dis-

order that can progress from cognitively normal to mild cognitive

impairment (MCI) to AD (Dubois et al., 2016).

As a syndrome defined by clinical and functional criteria, a diagno-

sis of MCI requires both subjective and objective cognitive changes.

Memory can be affected, although other cognitive domains including

executive functioning or language may be impaired (Petersen et al.,

2014). While there are different underlying causes of MCI, AD pathol-

ogy can be one etiology (DeCarli, 2003). Therefore, MCI can be the

prodromal or transition stage between cognitively normal and AD,

providing an important time period in which early detection and inter-

vention can occur (Anderson, 2020). Reported conversion rates of

MCI to AD differ depending on study, cohort, and population. Conver-

sion rates of 24% and 34% from meta-analyses performed in different

countries have been reported (McGrattan et al., 2022; Mitchell &

Shiri-Feshki, 2009). Identification of those who are at high risk of con-

version during the critical MCI period is essential for optimal disease

intervention,management, andpossible prevention (Aisen et al., 2011).

Neuroimaging biomarkers sensitive to pathophysiological changes

indicating conversion from MCI to AD are of intense interest to the

medical and scientific community (Feng et al., 2022;MacDonald&Pike,

2021; Rye et al., 2022; Veitch et al., 2019). Magnetic resonance imag-

ing (MRI) offers excellent spatial resolution and tissue contrast, and

the wide availability of large MRI datasets allows for the implementa-

tion ofmachine learning approaches for prediction (MacDonald&Pike,

2021). Classification algorithms trained on MRI data have an approxi-

mate 70% accuracy rate in identifying participants who will convert to

AD from MCI (Battista et al., 2020; Salvatore et al., 2016). Such algo-

rithms are often trained on features derived from gray matter, such as

whole-brain and regional gray matter volumes (Guo et al., 2014) and

cortical thickness (MacDonald et al., 2019; Shin et al., 2021). Recently,

there has been increased interest in imaging indicators that are sen-

sitive to dysregulated brain clearance in AD (Tadayon, Pascual-Leone,

et al., 2020), which may provide essential new information to improve

prediction accuracy.

While brain inflammation is a normal product of aging, AD is asso-

ciated with significantly more pervasive inflammation (Balusu et al.,

2016; Čarna et al., 2023). Inflammation weakens the immune sys-

tem and slows the clearing of waste toxins from the brain (Li et al.,

2023). The cerebrospinal fluid (CSF) provides waste removal and pro-

tection to the brain (Jessen et al., 2015). The CSF is primarily produced

by the choroid plexus (ChP), which also acts as a barriers separating

CSF from other fluids within the brain. The ChP is located bilaterally

within the third, fourth, and lateral ventricles (Hablitz & Nedergaard,

2021; Lun et al., 2015). In AD, the ChP changes shape and increases

in volume as the CSF decreases its protection of the brain from

inflammation (Balusu et al., 2016; Liu et al., 2022). Recent work has

demonstrated associations between increased ChP volumes and CSF

proteins, potentially reflecting disrupted clearance of protein aggre-

gates in AD (Tadayon, Pascual-Leone, et al., 2020). Moreover, ChP

enlargement has been reported in MCI patients compared to cogni-

tively normal controls (Choi et al., 2022). A longitudinal investigation

has shown that ChP volumes increase over time in older adults and are

significantly larger in subjects who convert to MCI or AD, compared

to subjects who remain cognitively normal (Novakova Martinkova

et al., 2023). These findings suggest that ChP volumes increase in the

prodromal stages of AD and thereforemight represent important neu-

roimaging biomarkers that can be used to predict conversion to AD in

patients living withMCI.

Another predictor of conversion from MCI to AD is memory

impairment (Belleville et al., 2017). Indeed, memory loss is widely

regarded as the initial symptom of AD (Talwar et al., 2021). Subse-

quently, declines are experienced in other cognitive domains such as

language, visuospatial abilities, and executive functions (Jahn, 2013;

Knopman et al., 2021). Subjective memory complaints and impaired

performance detected by neuropsychological testing are key diagnos-

tic features of MCI (Albert et al., 2011). The Rey Auditory Verbal

Learning Test (RAVLT) is a neuropsychological tool that has been pre-

viously implemented in diagnosing AD (Estévez-González et al., 2003).

It is sensitive to various measures related to memory function, such

as learning, delayed memory recall, false positives, and percentage

forgetting (Schmidt, 1996). An episodic verbal list learning measure,

RAVLT—Immediate (RAVLT-I), has been established to show superior

performance in differentiating participants with a diagnosis of stable

MCI and those with progressive MCI who later convert from MCI to

a diagnosis of AD (Moradi et al., 2017; Rye et al., 2022). Moradi and

colleagues (2017) reported that the RAVLT-I had significantly higher

accuracy in predicting conversion to AD than other RAVLT measures,

with a 72% success rate. These authors further demonstrated that

RAVLT-I scores can be predicted fromwhole-brain graymatter density

maps quantified from structural MRI. However, the ChP is not classi-

fied as gray matter and was therefore not included in this prior work.

Further investigation is therefore required to establish whether there

is a relationship between ChP volume andmemory performance in the

prodromal stage of AD.

The present study aimed to establishwhetherChPvolume is related

to memory performance in MCI and can identify those who will later

convert fromMCI toAD. Thiswas achieved by utilizing data from a lon-

gitudinal study, enabling the comparisonofparticipantsplaced into two

separate groups: those with stableMCI (sMCI) who remained stable in

their diagnosis of MCI over the course of the study period and those

with progressive MCI (pMCI) who converted from MCI to AD during
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the study. At the time of testing, all participants were diagnosed with

MCI. Longitudinal follow-up data enabled long-term outcomes relat-

ing to AD conversion. The first research aimwas to determinewhether

ChP volumes and RAVLT-I scores differed between participants with

sMCI and pMCI. The second research aim was to establish whether

there was a relationship between ChP volumes and RAVLT-I scores.

The third research aim was to investigate the predictive ability of ChP

volumes and RAVLT-I scores inMCI by determining whether these can

accurately predict later conversion to AD.

2 MATERIALS AND METHODS

Data used in the present work were obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).

The ADNI was launched in 2003 as a public–private partnership,

led by Principal Investigator Michael W. Weiner, M.D. The primary

goal of ADNI has been to test whether serial MRI, positron emission

tomography (PET), other biological markers, and clinical and neuropsy-

chological assessment can be combined to measure the progression of

MCI and early AD. For up-to-date information, see www.adni-info.org.

Importantly, the longitudinal study design allows for predictions about

AD conversion to be made, which was critical to the current research

question.

2.1 Participants

Only participants aged between 55 and 91 years old who are conver-

sationally fluent in English or Spanish were eligible to participate in

an ADNI study (Weiner et al., 2015). The ADNI study and all study

personnel comply with the Regulations for the Protection of Human

Subjects of Research as well as all federal regulations of good clinical

practice.Written informed consentwas obtained from the participants

for the storage and distribution for research purposes of all images and

cognitive testing data.

The ADNI clinical raters assigned participants as either cognitively

normal, MCI, or AD based on years of education, the Wechsler Mem-

ory Scale—Revised, theMini-Mental State Exam (MMSE), and a clinical

dementia rating (Petersen et al., 2010). For the present study, only

participants who were assigned MCI on their baseline session were

considered. The criteria for diagnosingMCI by ADNI clinical raters are

as follows: (1) participant must express a subjective memory concern

or report concern to a study partner or clinician; (2) an educationally

adjusted cutoff score from the Logical Memory II subscale Delayed

ParagraphRecall, ParagraphAonly, fromtheWechslerMemoryScale—

Revised (score<11 for thosewith≥16 years of education; score≤9 for

those with between 8 and 15 years of education; score ≤6 for those

with ≤7 years of education); (3) Clinical Dementia Rating of 0.5 and

Memory Box score of at least 0.5; and (4) general cognition perfor-

mance that is insufficient for a diagnosis of AD. The clinical protocols

implemented by the ADNI studies can be found at https://adni.loni.usc.

edu/methods/documents/.

For these MCI participants, all follow-up sessions across all ADNI

studies (ADNI1, ADNI2, ADNIGO, ADNI3) were carefully evaluated.

Participants who recorded an MCI diagnosis for all of their ADNI ses-

sions, with at least 24 months of follow-up data from the baseline

session, were allocated to the sMCI group. Allocation to the pMCI

group was through examination of all participants whose diagnoses

changed from MCI to AD in a subsequent session for any ADNI study.

For example, a participant with a consistent MCI diagnosis over the

course of ADNI1 and ADNI2, but who converted to AD during the

ADNI3 study, would be allocated to the pMCI group. Participants were

excluded if they (a) had a change of diagnosis back toMCI in any follow-

up sessions, (b) had MRI and neuropsychological testing more than

1 year apart, or (c) converted toAD in less than1 year from thebaseline

testing session. This resulted in a total of 115 participants allocated to

the pMCI group and 338 to the sMCI group. The ADNI roster identi-

fication numbers of all participants utilized in the present work can be

found inTable S1. Participant demographic data canbe found inTable 1.

2.2 MRI analyses

For each participant, images were obtained from the earliest possi-

ble MRI scan session. For most participants, this was the baseline or

initial scan. The date of the MRI acquisition was obtained from the

DICOM header information and carefully checked to ensure that it

aligned with the corresponding ADNI session with an MCI diagnosis

and to determine the differences between the MRI acquisition date,

the neuropsychological testing date, and conversion to AD date for the

pMCI group.

All image analyses were performed on three-dimensional T1-

weighted structural images, either magnetization-prepared rapid gra-

dient echo (MP-RAGE) or inversion recovery spoiled gradient (IR-

SPGR). Images were collected on either General Electric (GE) Health-

care, Philips Medical Systems, or Siemens Medical Solutions MRI

scanners. As data were obtained from all ADNI studies (ADNI, ADNI2,

ADNIGO, ADNI3), there were variations in vendor, field strength, and

imagingparameters. Summary information regarding theMRI scanners

can be found in Table 1 for both groups. MR images were downloaded

from theADNI database asDICOMsand converted toNIFTI format for

segmentation (Li et al., 2016).

Whole-brain automatic segmentation was initially performed on

each participant’s T1-weighted image using FreeSurfer Version 7.4.1

(https://surfer.nmr.mgh.harvard.edu). This included the recon-all func-

tion, which generates subcortical brain masks that can be used to

calculate the volume of the bilateral ChP (Fischl et al., 2002). However,

recent work by Tadayon, Moret, et al. (2020) introduced a more accu-

rate method to obtain ChP volumes of the lateral ventricles compared

to FreeSurfer alone. This unsupervised machine learning approach is

based on the Gaussian Mixture Model (GMM), which is applied to all

voxels within the lateral ventricles. This is achieved by utilizing seg-

mentations of the lateral ventricles generated by FreeSurfer. These

authors assessed their GMM method and compared it to FreeSurfer,

with manual segmentations of the ChP as the ground truth. The GMM

http://adni.loni.usc.edu
http://www.adni-info.org
https://adni.loni.usc.edu/methods/documents/
https://adni.loni.usc.edu/methods/documents/
https://surfer.nmr.mgh.harvard.edu
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TABLE 1 Demographic, magnetic resonance imaging (MRI), and neuropsychological testing information for the twomild cognitive impairment
(MCI) groups.

sMCI (n= 338) pMCI (n= 115)

Demographic information

Age (years) 72.70 (± 7.55) 73.76 (± 7.62)

Age range (years) 55–91 55–90

Number of females 138 (40.8%) 53 (46.09%)

Education (years) 16.07 (± 2.62) 16.08 (± 2.62)

Brain volumes

Estimated total intracranial volume (mm3) 1,527,494 (± 167,879.00) 1,530,178.69 (± 173,089.22)

Left choroid plexuses (mm3) 1424.06 (± 608.64) 1433.10 (± 467.99)

Right choroid plexuses (mm3) 1188.56 (± 411.09) 1289.57 (± 412.89)

Neuropsychological testing

RAVLT-I 37.33 (± 10.81) 30.55 (± 8.73)

MRI information

Field strength (1.5 T, 3 T) 95 (28%), 243 (72%) 28 (24%), 87 (76%)

Vendor (GE, Phillips, Siemens) 116 (34%), 44 (13%), 178 (53%) 33 (29%), 19 (16%), 63 (55%)

Abbreviations: pMCI, progressiveMCI; RAVLT-I, Rey Auditory Verbal Learning Test—Immediate; sMCI, stableMCI.

F IGURE 1 Example choroid plexus (ChP) segmentations from one
participant (stableMCI group). The FreeSurfer ChP segmentations are
overlaid in red, and Gaussianmixturemodel (GMM) segmentations
are shown in blue in axial (a) and three-dimensional rendered (b, c)
views. The final segmentations used in all analyses in the present work
were from the GMMonly, shown in blue in panel (c).

produced significantly more accurate segmentations of the ChP than

FreeSurfer alone (Tadayon, Moret, et al., 2020). The MRI data used

in this validation included the ADNI dataset, incorporating images

from cognitively normal, MCI, and AD participant groups. Further-

more, the accuracy of the GMM in segmenting the ChP has been

independently verified (Jeong et al., 2023), highlighting the robust-

ness of this algorithm. In the present study, after all images had been

processed in FreeSurfer, the GMM was applied to obtain the final

ChP volumes. Only ChP volumes from the left and right lateral ven-

tricles are included in the GMM. The implemented GMM code was

downloaded from the author’s GitHub repository (https://github.com/

EhsanTadayon/choroid-plexus-segmentation) and run using Python.

Example segmentations of the ChP from the present work from both

FreeSurfer and GMMare demonstrated in Figure 1.

2.3 Neuropsychological testing

All ADNI participants undergo in-depth neuropsychological assess-

ment, with a broad array of cognitive functioning assessed. The present

study focused on the RAVLT, a list learning task with 15 largely unre-

lated concrete nouns with limited semantic associations. The list is

read in order with deviations for the first five trials, after which a sec-

ond list of 15 largely unrelated words is introduced. The test takes

approximately 10–15 min to complete with the administrators follow-

ing a script that is provided to them to ensure that all tests are reliable

(Schmidt, 1996). The RAVLT-I measure is scored by summing the num-

ber of words recalled in trials 1–5. For all participants, the RAVLT-I

score was obtained from the neuropsychology testing session closest

in date to theMRI acquisition.

2.4 Statistical analyses

To address the first and second research aims, group comparisons and

regression analyses were performed. All statistical analyses were per-

formed using SPSS version 29. Variables including age, sex, and years

of education have previously been shown to be a significant predictor

of conversion to AD andwere therefore accounted for in the statistical

analyses (Fritsch et al., 2002;Visser&Verhey, 2008). Thiswas achieved

by comparing age andyears of educationbetween the twogroupsusing

independent samples t-tests and by including these variables in the

regression analyses.

Left and right hemispheric ChP volumes were normalized by

the estimated intracranial volume, which was generated from the

FreeSurfer analysis. All ChP volumes included in statistical analyses

were normalized as the ratio of the estimated intracranial volume. The

https://github.com/EhsanTadayon/choroid-plexus-segmentation
https://github.com/EhsanTadayon/choroid-plexus-segmentation
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left and right ChPs were analyzed separately. The first analyses com-

pared the pMCI and sMCI groups for ChP volumes and RAVLT scores

using independent samples t-tests. Paired samples t-tests were per-

formed to determine if there was a difference between left and right

ChP volumes for each group.

The relationships between RAVLT-I scores and left and right ChP

volumes were assessed in multiple regression analyses with the

RAVLT-I as the outcome variable and ChP volume, age, sex, and years

of education as the predictor variables. Separate regressions were

performedwith the left and right ChPs as predictor variables. One par-

ticipant (from the sMCI group)was removed fromall RAVLTanalyses as

an outlier with an RAVLT-I score less than 3 standard deviations from

themean.

2.5 Classification

To address the third research aim, classification was performed

using open-source Python packages including jupyter, matplotlib,

numpy, pandas, seaborn, and scikit-learn (Pedregosa et al., 2011). Two

supervised machine learning binary classification approaches were

implemented—one using the k-nearest neighbors (kNN) algorithm and

another using Random Forest. These were performed to compare the

accuracy of groupmembership (sMCI or pMCI) classification fromChP

volumes and RAVLT-I scores. To avoid misclassification due to sam-

ple size differences, the number of individuals in the sMCI group was

reduced to match the pMCI group using random selection. Each kNN

classifier was trained on 70% of the data, with 10-fold cross-validation

performed to determine k. For Random Forest, hyperparameter tun-

ing was performed to find the optimal model. The predictor variables

included the left and right ChP volumes and RAVLT-I data individually,

as well as all combinations of features resulting in seven different clas-

sifiers: left ChP volume, right ChP volume, and RAVLT-I individually;

left + right ChP volume; RAVLT-I + left ChP volume; RAVLT-I + right

ChP volume; and RAVLT-I + left ChP volume + right ChP volume.

Classification metrics including accuracy, specificity, sensitivity, and

area under the receiver operating characteristic (ROC) curve enabled

comparisons betweenmodels in terms of accuracy.

3 RESULTS

3.1 Participants

Independent samples t-tests showed that there were no differences

between the sMCI and pMCI groups in terms of age (p= .13) or number

of years of education (p = .80). Table 1 shows the means and standard

deviations of demographic data for the two groups.

For the pMCI group, the number of days to conversion to AD was

calculated by taking the difference between the MRI acquisition date

used in the present analyses and the first ADNI session date with an

AD diagnosis. The mean difference was 1264.4 (± 765.5) days, with a

range of 386–3730 days. Themean difference between theMRI acqui-

sitiondate andneuropsychological testingdate for thepMCIgroupwas

40.2 (± 51.5) days, with a range of 0–359 days. For the sMCI group,

the mean difference between MRI acquisition and neuropsychological

testing was 39.7 (± 46.1) days, with a range of 0–348 days.

3.2 Group comparisons

The independent samples t-tests comparing the two groups showed a

significant difference for right ChP, with right ChP volumes larger for

the pMCI group (t(451) = −2.54, p = .01, 95% confidence interval [CI]

[−0.116, −0.015]). There was no difference between the two groups

for the left ChP (p = .83). The paired samples t-tests indicated that the

left ChP was larger than the right ChP for both sMCI and pMCI groups

(both p< .001). Figure2 showsviolin plotswith themean, quartiles, and

range of values of left and right ChP volumes.

For the independent samples t-test performed on RAVLT-I scores,

Levene’s Test for Equality of Variances was significant, indicating het-

erogeneity of variances. Therefore, the results of the Welch t-test are

reported. There was a significant difference between the two groups

for RAVLT-I scores, with the sMCI group having higher RAVLT-I scores

than thepMCI group (t(441.7)=6.76,p< .001, 95%CI [4.93, 8.87]). The

mean RAVLT-I scores are shown in Table 1, and the means, quartiles,

and distributions of scores are displayed in Figure 2.

3.3 Regression

The assumptions for multiple regression were assessed and met for all

reported regression analyses, including the presence of outliers and

multicollinearity. When the left ChP volume was included as a predic-

tor variable with age, sex, and years of education, and the RAVLT-I was

used as the outcome variable, the overall model was significant when

all participants (collapsed over group)were included (F(4, 447)=16.20,

p < .001, R2 = .13, adjusted R2 = .12). However, the left ChP was not a

significant predictor variable in this analysis (t = −0.99, p = .33). Age,

sex, and years of education all significantly predicted theRAVLT-I score

(p< .001, p< .001, and p= .02, respectively).

A separate regression analysis was performed for the sMCI group

only with the left ChP as a predictor variable (along with age, sex,

and years of education); the overall model remained significant (F(4,

332) = 19.15, p < .001, R2 = .19, adjusted R2 = .18). However, the

left ChP remained a nonsignificant predictor (p = .32). When only the

pMCI groupwas analyzed, the regressionwith the left ChP as a predic-

tor variable was nonsignificant. The scatterplot in Figure 3a shows the

relationship between the RAVLT-I and left ChP for both groups.

For the analyses with the right ChP volume, age, sex, and years of

education as predictor variables and RAVLT-I as the outcome variable,

the overall model was significant when all participants (collapsed over

group) were included (F(4, 447) = 17.16, p < .001, R2 = .13, adjusted

R2 = .12). The rightChPwas a significant predictor of theRAVLT-I score
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F IGURE 2 Violin plots with quartiles showing the distribution of
(a) left and (b) right choroid plexus (ChP) volumes normalized by
estimated intracranial volume, and (c) Rey Auditory Verbal Learning
Test—Immediate (RAVLT-I) scores for the progressiveMCI (pMCI)
(left, red) and stableMCI (sMCI) (right, blue) groups. There was a
significant difference between the two groups for RAVLT-I scores
(p< .001) and right ChP volumes (p= .01).

F IGURE 3 Scatterplots showing regression lines for Rey Auditory
Verbal Learning Test—Immediate (RAVLT-I) score and left choroid
plexus volume (a) and right choroid plexus volume (b) for both groups
(progressiveMCI [pMCI] in black and stableMCI [sMCI] in pink).

(t=−2.1, p= .04, 95%CI [−8348.1,−244.7]). Age, sex, and years of edu-
cation were also significant predictors (p < .001, p < .001, and p = .02,

respectively).

When the regression analysis was performed only on the sMCI

group with the right ChP, age, sex, and years of education as predic-

tor variables, the overall model remained significant (F(4, 332)= 19.59,

p < .001, R2 = .19, adjusted R2 = .18). However, the right ChP was

no longer a significant predictor (t = −1.56, p = .12). The regression

with the right ChP as a predictor variablewas nonsignificantwhen only

the pMCI group was analyzed. The scatterplot in Figure 3b reveals the

relationship between the RAVLT-I and right ChP for both groups.
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TABLE 2 Performancemetrics of the kNN and Random Forest (RF) classifiers used to predict groupmembership (stable mild cognitive
impairment or progressivemild cognitive impairment).

Predictor variables Accuracy Sensitivity Specificity

kNN

Left ChP volume (k= 7) 0.61 0.57 0.65

Right ChP volume (k= 7) 0.54 0.60 0.47

RAVLT-I (k= 7) 0.71 0.77 0.65

Left+Right ChP volumes (k= 3) 0.58 0.51 0.65

RAVLT-I+ Left ChP volume (k= 11) 0.72 0.69 0.76

RAVLT-I+Right ChP volume (k= 7) 0.64 0.66 0.62

RAVLT-I+ Left+Right ChP volumes (k= 7) 0.65 0.60 0.71

RF

Left ChP volume 0.59 0.68 0.59

Right ChP volume 0.56 0.62 0.50

RAVLT-I 0.65 0.53 0.77

Left+Right ChP volumes 0.55 0.59 0.54

RAVLT-I+ Left ChP volume 0.70 0.58 0.78

RAVLT-I+Right ChP volume 0.67 0.51 0.82

RAVLT-I+ Left+Right ChP volumes 0.64 0.61 0.67

Abbreviations: ChP, choroid plexus; RAVLT-I, Rey Auditory Verbal Learning Test—Immediate.

3.4 Classification

The 10-fold cross-validations performed determined the k for each of

the seven kNN classifiers; all kwere either 3, 7, or 11. These are shown

in Table 2with the performancemetrics of the kNNandRandomForest

classifiers. Based on the kNN metrics, the predictors that resulted in

the best-performing classifier for predicting group membership were

the combination of RAVLT-I + Left ChP volume, with an accuracy rate

of72% (shown inFigure4e).When lookingat individual predictorsonly,

the RAVLT-I outperformed both the left and right ChP volumes, with

bothhemispheresperforming verypoorly.However, the additionof left

ChP volume to the RAVLT-I score very slightly improved the accuracy,

specificity, and area under the ROC curve. This can be observed from

the ROC curves for each of the seven classifiers displayed in Figure 4.

The sensitivity was superior with RAVLT-I as a lone predictor vari-

able. The results were similar when Random Forest classification was

implemented. With this classifier, the predictors that resulted in the

best-performing classifier for predicting group membership were the

combination of RAVLT-I + Left ChP volume, with an accuracy rate of

70%. For the single predictors, RAVLT-I scores outperformed left and

right ChP volumes in terms of accuracy.

4 DISCUSSION

This study aimed to explore the relationships between memory per-

formance and ChP volumes in MCI and determine whether these can

be used to predict conversion to AD. To this end, the first research

aim was to establish whether significant differences existed between

participants withMCIwhowould later progress to AD (pMCI) and par-

ticipants who remained stable in their MCI diagnosis (sMCI) in terms

of memory performance measured with the RAVLT-I and ChP vol-

umes. Significant differences were found, with the pMCI group having

significantly larger ChP volumes in the right hemisphere and signifi-

cantly lower RAVLT-I scores than the sMCI group. The second research

aim sought to establish whether there was a relationship between

RAVLT-I scores and ChP volumes; this was largely unsupported by the

present results, with the only significant relationship found between

RAVLT-I scores and right ChP volumes when all participants collapsed

over the two groups were analyzed. The third research question asked

whether group membership (sMCI or pMCI) could be predicted from

ChP volumes and RAVLT-I scores. Individually, the accuracy of group

membership classification fromChPvolumewas poor.When combined

with theRAVLT-I, the leftChP showed reasonable classification perfor-

mance and slightly improved classification performance of the RAVLT-I

alone. Overall, these results suggest that ChP volume in prodromal

AD may be indicative of later conversion to AD, although the negative

findings from the regression and classification analyses should also be

taken into consideration.

Understanding the neurobiological underpinnings of memory

changes inMCI is crucial for predicting disease progression and imple-

menting treatment (Albert et al., 2011). Prior work has characterized

volumetric changes in key memory regions in patients living with MCI.

Medial temporal lobe regions including the entorhinal cortex and hip-

pocampus have shown significant volume reductions in patients living

with MCI compared to healthy controls (Pennanen et al., 2004). Atro-

phy of the medial temporal lobe is associated with reduced cognitive

scores inMCI (van dePol et al., 2007).More recently, it has been shown
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F IGURE 4 Receiver operating characteristic
(ROC) curves for kNN classifiers used to predict
groupmembership (progressiveMCI or stable
MCI) from (a) left choroid plexus (ChP) volumes,
(b) right ChP volumes, (c) Rey Auditory Verbal
Learning Test—Immediate (RAVLT-I) scores, (d) left
and right ChP volumes, (e) RAVLT-I scores and left
ChP volumes, (f) RAVLT-I scores and right ChP
volumes, and (g) RAVLT-I scores and left and right
ChP volumes. The best-performing classifier was
(e), with a 72% accuracy rate.
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that the ChP undergoesmorphological alterations in people livingwith

MCI and AD (Choi et al., 2022), leading to the research question of

whether ChP changes are associated with memory changes observed

in these patients. While there is no evidence suggesting that the ChP

is directly implicated in memory function, reduced capacity of the ChP

may indirectly lead to memory impairment due to alterations in the

brain environment. Themain function of theChP is to produce theCSF,

which is critical for healthy brain function as it provides mechanical

support, facilitates neuronal activity by transporting neuromodulators,

and removes metabolic byproducts (Bjorefeldt et al., 2018; Kaur et al.,

2016; Kelley, 2021). The present work did not find a significant linear

relationship between ChP volume and RAVLT-I score in sMCI and

pMCI groups separately. While the overall regression models were

significant for the sMCI group, the coefficient for the ChP predictor

was not significant. For the sMCI group, this indicates that age and

sex are better predictors of RAVLT-I scores than ChP volumes. For

the pMCI group, the overall regression models were nonsignificant,

indicating that even age and sex were not significant predictors of the

RAVLT-I score. This discrepant finding between the two groups (sMCI

and pMCI) might be due to the larger sample size of the sMCI group.

These findings indicate that the question of whether ChP volume is

associatedwithmemory performance in these groups remains unclear.

Another consideration of these nonsignificant findings is the choice of

neuropsychological test. The RAVLT-I was chosen as it has been used

previously in research predicting conversion to AD in patients living

with MCI (Mofrad et al., 2021; Moradi et al., 2017; Rye et al., 2022),

and therefore it is the best choice of test to enable comparison. Prior

work has reported negative correlations between ChP volume and

cognitive test scores in AD (Choi et al., 2022), which was supported

by the results of the present study but only when all MCI participants

were analyzed together. Further work is warranted to determine

whether there are other neuropsychological tests associatedwith ChP

volume in sMCI and pMCI groups separately.

The present work reported significant differences between the

pMCI and sMCI groups in terms of the RAVLT-I score and right ChP

volume. The group differences in RAVLT-I scores were expected given

prior findings (Moradi et al., 2017). However, the group difference in

right ChP volume is a novel contribution to the literature. There was

no difference between the pMCI and sMCI groups for the left hemi-

sphereChP volume; however, for both groups, the left hemisphereChP

was significantly larger than the right. Chronic immune responses are

known to occur in AD (Kinney et al., 2018), and there is clear evidence

implicating the ChP in this inflammation (Gião et al., 2022; Strominger

et al., 2018). Inflammation appears to be associatedwith observedChP

volume changes inMCI andAD (Choi et al., 2022); however, it is unclear

why a hemispheric difference would exist. When looking at Table 1,

both groups showed larger left ChP than right ChP, but the pMCI group

seemed to demonstrate relative enlargement of the right ChP. A spec-

ulative interpretation is that the left ChP is the first hemisphere to

respond to inflammatory processes occurring in MCI, and the engage-

ment of both hemispheres for the pMCI group might be indicative of

stronger inflammation and risk of AD conversion. Asymmetry of the

ChP has been found in the developing brain, with the left hemisphere

larger than the right (Corballis, 2013). Whether this early life asym-

metry is associated with later aging-related inflammation is unclear. A

counterargument to the biological perspective is that there is an MRI

artifact affecting the volumetric analyses. However, support for this is

weak as scanning took place on differentMRI scanners across multiple

sites. Importantly, the present findings are not the first to report lat-

erality effects of the ChP. Consistent with the results presented here,

one priorMRI study that collected independent data (i.e., was not affil-

iated with ADNI) reported a significant increase in right-hemisphere

ChP volume when comparing participants with complex regional pain

syndrome to healthy controls (Zhou et al., 2015). Clearly, further work

is required to understand why such laterality effects of the ChP are

reported, and whether this is associated with immune surveillance and

response.

A limitation of this study is the known heterogeneity of the MCI

groups. Numerous studies have identified early and late subtypes of

MCI based on neuropsychological testing scores (Aisen et al., 2010;

Edmonds et al., 2019; Lin et al., 2022; Wei et al., 2018). In the present

work, early and late MCI was not overtly differentiated, instead focus-

ing on conversion to AD in keeping with comparable research focused

on progressive and stable MCI (Mofrad et al., 2021; Moradi et al.,

2017; Rye et al., 2022). The pMCI and sMCI groups may contain

variance attributed to these MCI subtypes, which could be further

differentiated to improve classification accuracy, should sample size

permit. Another limitation of the present study that must be consid-

ered when interpreting the results is the known limitations associated

with automatic segmentation. Diligence in ChP segmentation accuracy

was undertaken by including an additional algorithm, the GMM. How-

ever, the initial estimates for this algorithm are based on FreeSurfer

outputs. Furthermore, the normalization of the ChP was performed

using FreeSurfer total intracranial volume segmentation estimates.

Research has shown that FreeSurfer segmentations can be biased,

particularly for subcortical structures (Srinivasan et al., 2020). A final

study limitation is the chosen data and the possible information that

could improve classification performance. There is a wealth of infor-

mation that could be included to improve classification accuracy and

prediction of cognitive function, such as more gray matter features

from structural MRI (e.g., cortical thickness, whole-brain gray matter

parcellations), functionalMRI (e.g., cerebral blood flow, functional con-

nectivity, cerebrovascular reactivity), and CSF biomarkers quantifying

ADpathology (e.g., beta-amyloid concentration) (Fjell et al., 2010;Mac-

Donald et al., 2020; Vemuri et al., 2018; Williams et al., 2023). In the

present work, the poor classification performance of the ChP volumes

alone, but the slight improvement in performance when left ChP vol-

ume was combined with the RAVLT-I, indicates that exploring other

features that could be used for improving classification accuracy in

conjunction with ChP volume is a worthy future research endeavor.

In summary, the present work provides novel interpretations of the

ChP as a potential biomarker for conversion fromMCI to AD. ChP vol-

ume from the right hemispheric lateral ventricle showed significantly

larger volumes in patients who later progressed fromMCI to AD, com-

pared to those who remained stable in their MCI diagnosis. However,

the best group classification performance was found when the kNN
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classifier was trained on left ChP volumes and RAVLT-I scores, despite

very poor performance when the ChP volumes were the only features.

While further research is required to determine the significance of

these laterality differences, the presented results support the further

exploration of the ChP, in conjunction with other pertinent imaging

features and neuropsychological test scores, for understanding the

processes underlying conversion fromMCI to AD.
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